
Updated: Jan. 7th 2025Jan. 7th 2025 by glitchdetector

User ApplicationsUser Applications
This system allows loading any web app into the game, the web app is then fed various information automatically from the game client. The web app is shown directly
in the game window, and can be interacted with by the player directly within the game.

See the example app at https://cdn.tycoon.community/dev/userapp/sample.html. It contains the basic code to listen to incoming data and send requests back to the
game client.

You can also load the application monitor.html in-game to see all data values in real time.

InterfaceInterface
By default, the F1 key opens the User Applications interface. The user is requested to input a Web URL for the web app they want to load.

The F1 key is used to regain focus to the web app and display the web app if it was hidden previously.

You can load more than one application at once, by clicking "New Tab" you create an additional application slot. You may currently have up to 5 applications loaded at
once.

Tabs are not hidden by default, and will all stay visible at the same time. Apps may have specific behavior based on if they are the active tab or not. You are unable to
physically interact with anything not in the current tab.

Pro tip: When you open the interface, but before interacting with anything, you may use the TAB key to switch between tabs.

Pro tip: When you open the interface, but before interacting with anything, you may use the ESC key to return control to the game (pin the applications).

CommandsCommands
You can send commands to the game from your web app.

The command is sent as a JSON object with type set to the command name, and each argument as their own properties. Eg {type: "setWaypoint", x: 500,
y: 250}

CommandCommand ParametersParameters DescriptionDescription

setWaypoint x : number, y : number Sets the in-game waypoint

sendCommand command : string Sends a console command to the game client

notification text : string Shows a notification over the map

info text : string, time :
number Shows a lingering info message on the bottom right, time is in seconds

getData No arguments Forces the game client to send the entire data cache

getNamedData keys : array Requests only the named data keys from the cache

close No arguments Gives focus back to the game and hides the web app

pin No arguments Gives focus back to the game, but keeps the web app on screen

sfx sfx : number Plays a SFX, see list below for sfx indexes

popup title : string, text : string Shows a full-screen text message

oneliner text : string Shows a black mid-screen box with text

message text : string Shows a mid-screen text message

shareLocalData key : string, value : string Adds a shared key/value pair accessible by all loaded applications (see
below)

shareServerData key : string, value : string Adds a server-shared key/value pair that is shared with all players (see below)

DataData
This is a (not complete) list of data that the game may provide. The data is generally provided when updated in-game.

https://cdn.tycoon.community/dev/userapp/sample.html

KeyKey TypeType DescriptionDescription

user_id number The user ID of the player

source number The player index of the player

name string The player's name

job string The current job the player has

wallet number Current wallet balance

bank number Current bank balance

vehicle string model name for current occupied vehicle (onFoot when on foot)

vehicleClass number class id for vehicle

vehicleName string display name for vehicle

vehicleMake string vehicle brand name

vehicleClassName string Class name for vehicle (not always based on vehicleClass)

rpm number Vehicle engine RPM

engine string Vehicle engine state, either on or off

fuel number Remaining fuel in vehicle

honk boolean Is vehicle horn honking

car string owned spawned car model name

cab string owned spawned cab model name

trailer string owned spawned trailer model name

aircraft string owned spawned aircraft model name

helicopter string owned spawned helicopter model name

boat string owned spawned boat model name

notification string Last shown notification

pos_x number Player Position X component

pos_y number Player Position Y component

pos_z number Player Position Z component

pos_h number Player rotation (heading)

zone string Map area ID

zoneName string Name of map area

street string Current street name

discord string Discord identifier for user, if present (in raw form discord:<id>)

runway_[RUNWAY_ID] string Contains state of the runway with specified id, either free (yellow), occupied (red) or reserved
(green). reserved being the local player having reserved it.

inventory string JSON of the current player inventory

weight number Current weight of inventory

max_weight number Capacity of inventory

waypoint boolean Is a waypoint set?

waypoint_x number Waypoint Position X component

waypoint_y number Waypoing Position Y component

menu string Current open vRP menu title

menu_choice string Last vRP menu button choice

chest string Internal ID of the current open chest (storage, trunk etc)

chest_[chest_id] string JSON of the current inventory in the specified chest, only updates when chest is opened.

faction_id number Faction ID

faction_name string Name of the current faction

faction_tag string Faction chat tag

faction_president boolean Is the player the president of the faction?

pkey string The public API key for this user, if one is generated.

health number Player's current health

armor number Player's current armor

landing_gear string State of the landing gear. deployed , retracting , deploying , retracted or broken .

altitude number Vehicle altitude over terrain

hidden boolean Is the web app hidden (closed)?

pinned boolean Is the web app pinned (shown but not in focus)?

focused boolean Is the web app in focus?

tabbed boolean Is this web app the current tab?

players string JSON of online players with server id as string keys, each player is an object and should contain the
name property

players_[key] string JSON of shared server data from web apps (see below)

local_[key] string Shared data between web apps (see below)

weather string Current weather type (or the one we're transitioning to)

weather_forecast string The next expected weather type

weather_frozen boolean Is the weather frozen? (not going to change)

weather_snow boolean Is there snow on the ground?

KeyKey TypeType DescriptionDescription

Player identifiers (like steam , license etc) are also provided when available, with the type as the key and the raw identifier as the value. Eg steam:
steam:12345678

RunwaysRunways
Runways will provide their state when they update, the different states are free (yellow), occupied (red) or reserved (green). reserved being when the local
player called ATC for the runway.

The keys for runways always begin with runway_ , and they generally follow the format [airport]_[designation] eg. LSIA_MAIN , MGA_SIDE or SSIA_JET .

Cache BehaviorCache Behavior
Most key/value pairs are stored locally by the player. The cache will contain the value so it may be requested at any time. Keys with the following prefixes are not
stored in cache and cannot be requested by getData or getNamedData :

temp_
trigger_
chest_

TriggersTriggers
Triggers work just like data, and are sent as data. The key is always prefixed with trigger_ . Triggers are not cached and will not be returned by getData . The value
provided is the game client timer value, which is in milliseconds.

There are 4 built-in trigger binds that can be configured in Settings > Keybinds > FiveM . SquareSquare, TriangleTriangle, CircleCircle and CrossCross.

These send trigger_square , trigger_triangle , trigger_circle and trigger_cross respectively. The command userapp_trigger <key> can send
custom triggers, eg userapp_trigger accept would send trigger_accept to the web app.

Sound EffectsSound Effects
Using the sfx command, you can play a curated set of sound effects:

sfxsfx
idid NameName

1 CHECKPOINT_MISSED

2 FLIGHT_SCHOOL_LESSON_PASSED

3 TIMER_STOP

4 Bed

5 MEDAL_UP

6 CHALLENGE_UNLOCKED

7 ScreenFlash

8 On_Call_Player_Join

9 Out_Of_Bounds_Timer

10 ROUND_ENDING_STINGER_CUSTOM

11 DELETE

12 OTHER_TEXT

13 GOLF_NEW_RECORD

14 GOLF_BIRDIE

15 GOLF_EAGLE

16 MP_RANK_UP

17 MP_WAVE_COMPLETE

Local Shared dataLocal Shared data
You can send data that is shared between all the applications loaded on the client using the shareLocalData command.

This data is fed back as a key/value pair with the following format: local_[key] = [value] .

Server Shared dataServer Shared data
There's a built in protocol to share data between players on the current server, this allows you to communicate certain information between several players at once.

By invoking the command shareServerData , you can set a key and a value parameter that is synced across all players. The resulting synced value is stored in a
single JSON field, containing all player's values for said key, and a server time value (in milliseconds, not system time) for when the value was last updated. The TTL
(time-to-live) for the values stored is 2 minutes (120 seconds), in which new updates no longer include the expired values.

An example:An example:

You send the server data of key checkpoint with a value of 5 from a player with server id 6 , the resulting value sent to all clients is then players_checkpoint =
{"6": [5, 987654321]} (987654321 being the server time).

If you now send checkpoint with value 4 from another player with server id 12 , the value is updated to players_checkpoint = {"6": [5, 987654321],
"12": [4, 987655557]} .

By providing an empty string for value , you will remove the entry for the player.

	User Applications
	Interface
	Commands
	Data
	Runways
	Cache Behavior
	Triggers
	Sound Effects
	Local Shared data
	Server Shared data

